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Abstract

This paper introduces a general version of the information matrix
consisting of the autocorrelation and cross-correlation matrices of the
shifted input and output data. Based on the concept of data corre-
lation, a new system realization algorithm was developed to create a
model directly from input and output data. The algorithm starts by
computing a special type of correlation matrix derived from the infor-
mation matrix. The special correlation matrix provides information
on the system-observability matrix and the state-vector correlation.
A system model was then developed from the observability matrix in
conjunction with other algebraic manipulations. This approach leads
to several different algorithms for computing system matrices for use

in representing the system model The relationship of the new algo-
rithms with other realization algorithms in the time and frequency
domains is established with matrix factorizalion of the information
matrix. Several examples are given to illustrate the validity and use-
fulness of these new algorithms.

1. Introduction

Recently, system identification has gained much support for active control of flexible struc-

tures, including acoustic noise reduction, jitter-induced vibration suppression, and fine pointing
of spacecraft antenna. In practice, control designs based on analytical models will not work

when used the first time because often the analytical models used in the control designs are

not accurate enough to meet specified performance requirements. As a result, most practicing
engineers conduct experiments to either tune the control parameters or identify accurate math-

ematical models from input and output data. In addition to identifying system models, most

robust control methods require information about model uncertainties.

System identification encompasses many approaches, perspectives, and techniques (refs. 1-9)
and can be divided into two groups. One group of techniques uses the nonparametric approach
(refs. 1-8) with the least-squares method to determine the input-output map. The input-output

map is characterized by a system model which may not have any explicit physical meaning.

These techniques are generally referred to as black box approaches and are noniterative. A

second group of techniques uses the parametric approach (ref. 9) to determine system model

parameters. The parameters may represent physical quantities such as structural stiffness or

mass. Nonlinear mathematical optimization techniques are used to search for the optimal value
of each parameter.

Both parametric and nonparametric approaches have many successful applications. While

development and enhancement of the many individual techniques continue, a comprehensive

yet coherent unification of the different methods is still needed. In the past decade, researchers

have successfully provided frameworks to unify different techniques via system realization theory

(ref. 1).

This paper is based on the need to improve system identification techniques such as those

discussed in references 6-8. Computational time and numerical accuracy are an issue when

measurement data are substantial. Section 3 of this paper describes an alternate procedure used

to perform system identification more efficiently with the concept of data correlations presented

in references 9 and 10. A new algorithm called "system realization using information matrix"

(SRIM) is developed. The information matrix is similar to the matrix defined in reference 9 for
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the frequency-domain analysis, but has a general form consisting of shifted input-and output-
data correlations in the time domain or frequency domain. A special correlation matrix is

introduced and computed from the information matrix. The special correlation matrix reduces to

the shifted data correlation of the pulse response if the output is a free-decay response generated

by a pulse input. To form a discrete time model, the SRIM algorithm includes several methods of

different merit for computing system matrices, including the state matrix, th e input and output
matrices, and the direct-transmission matrix.

The eigensystem realization algorithm with data correlation (ERA/DC) (ref. 10) uses the

shifted data correlation of the pulse response and factors the correlation matrix via singular-
value decomposition to obtain the system matrices. The pulse response may be obtained with

either a pulse input or computed from input and output data with the observer/Kalman filter

identification (OKID) technique (ref. 11). Thus, the SRIM algorithm presented in this paper

may be considered an extension of the ERA/DC for system identification directly from input
and output data.

Section 4 of this paper describes how the mathematical framework developed for the SRIM

algorithm is used to establish the relationship among different realization techniques and how
the different algorithms may be derived from the information matrix. The basis vectors of the

column space and the null space of the information matrix are the key elements that provide
the link among the different realization algorithms. Matrix factorization of the information

matrix is presented as the most important step in the theoretical development and computational
procedure that allows unification of many different techniques.

Each section of this paper starts with background information and ends with numerical and

experimental examples that illustrate the validity and usefulness of the algorithms presented in
the paper. Comparisons of algorithms are also discussed to demonstrate the merit of different

techniques for computing system matrices.

2. Symbols

A

Ac

B

Be

C

Ca

D

K

state matrix, n x n

continuous-time state matrix, n x n

input-influence matrix, n x r

continuous-time input-influence matrix

ith column of B, n x 1

output-influence matrix, m x n

accelerometer output-influence matrix

direct-transmission matrix, m x r

ith column of D, m x 1

frequency-response function, m x r (at frequency variable %)

identity matrix of order i

stiffness matrix

k time index

ki

£

M

ith spring constant

data length

mass matrix

.
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m

rn i

n

_o

Op

OpA, OpF

P

7_,_

TC.hh

T_xu

_2,.xx

_zz

T_yu , _yu

TCyz

T2_yy

r

U

Un

Uo

Hon ,btoT-

Up(k)

 i(k)

u v(k)
v

v(k)
"O9

wi

x(k)

yp(k)

number of outputs

ith mass

order of first-order system

number of zero singular values

observability matrix, pm x n

working matrices

integer determining maximum order of system

information matrix, p(m + r) × p(m + r)

fundamental SRIM correlation matrix, pm× pm

autocorrelation of input vector, pr x pr

cross correlation of state and input vectors, n × pr

autocorrelation of state vector, n × n

state-related correlation matrix, n × n

cross correlation of output and input •vectors, pm × pr

cross correlation of output and state vectors, pm x n

autocorrelation of output vector, pm x pm

number of inputs

Toeplitz matrix, pm x pr

left singular matrix

special force matrix at time index k, m x r

columns of left singular matrix corresponding to nonzero singular values

columns of left singular matrix corresponding to zero singular values

working matrices

output matrix containing up(k) up to up(k + N - 1), pr x g

input-force vector at time index k, r × 1

ith input force at time index k

vector containing u(k) up to u(k + p- 1), rp x 1

vector containing u(k) up to u(k + N - 1), pN x 1

right singular matrix

process-noise vector at time index k

displacement vector

ith element of w

matrix containing x(k) up to x(k + N- 1), n x N

state vector at time index k, n x 1

output matrix containing yp(k) to yp(k + N - 1), pm x N
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y(k)

yp(k)

Zk

_,_,0

 (zk)

F

4k)

E

En

o"i

Oi

0ixj

t

output-measurement vector at time index k, m x 1

vector containing y(k)up to y(k + p- 1), pm × 1

frequency-domain variable

parameter matrices

ith ARX-coefficient matrix, m x m (associated with output vector y(k + i))

ARX-coefficient matrix, m x m (associated with output vector y(zk) at

frequency variable %)

ith ARX-coefficient matrix, m x r (associated with input vector u(k + i))

ARX-coefficient matrix, m x r (associated with input vector u(zk)
at frequency variable Zk)

working matrix

measurement noise vector at time index k

ith damping term

damping matrix

singular-value matrix

diagonal matrix containing nonzero singular values

ith singular value

working matrix

zero-square matrix of order i

zero-rectangular matrix of dimension i by j

pseudoinverse

Abbreviations:

ARX autoregressive exogeneous

ERA/DC eigensystem realization algorithm with data correlation

FRF frequency-response function

IDM indirect method

0EM output-error minimization method

0KID observer/Kalman filter identification

SMI subspace model identification

SRIM system realization using information matrix

SV singular value

3o System Realization Using Information Matrix (SRIM)

This section presents a system realization algorithm for computing system matrices to

characterize the map from input to output. The system matrices are the state matrix A, the

input matrix B, the output matrix C, and the direct-transmission matrix D. The key to the

_)



SRIM algorithm is computation of the information matrix, which consists of autocorrelation and
cross-correlation matrices of the shifted input and output data.

Section 3 starts with a description of a discrete-time state-space model and gives key
definitions, such as the observability matrix and the Toeplitz matrix formed from the system

matrices• The development of the state-space model realization used to compute the set of system

matrices [A, B, C, D] follows• Next, the computational steps are provided for the algorithm•
Finally, simulation and experimental examples are described.

"% ,

3.1. State-Space Model

A deterministic, linear, time-invariant system is commonly represented by the following
discrete-time state-space model:

x(k + 1)= Ax(k) + Bu(k) ]

fy(k) = Cx(k) + Du(k)
(1)

where x(k) is an n x 1 state vector at time index k, u(k) is an r x 1 input vector corresponding
to r inputs, and y(k) is an m x 1 output vector associated with m sensor measurements. The

system matrices A, B, C, and D are unknown and will be determined from given input and

output data, that is, u(k) and y(k) for k = 0, 1,2,...,£.

Equation (1) can be written for various time shifts in a matrix form as

... [4 ...y(0) y(1) --- y(Z) J = u(0) u(1).., u(£)] (2)

If the quantities u(k),y(k) for k = 0,1,...,£, and x(k) for k = o, 1,...,e + 1 are known,

then A, B, C, and D may be determined from equation (2) with the least-squares technique•

Unfortunately, the time sequence of the state vector x(k) for k = 0, 1,...,g + 1 is generally

unknown and must either be estimated or measured, if possible. In practice, usually only the

input and output sequences u(k) and y(k) for k = 1,..., g, respectively, are available. Therefore,
other forms of system equations must be found for use in system identification.

With several algebraic manipulations, equations (1) produce

_(k) 1
y(k + 1) /

y(k.+2) ]
_(k+;- 1)..j

+

C

CA

CA 2 x(k)

CAP-1

CB

• CAB

Lo,d_-2B

D

CB

CAP-3 B

0

D

CAp-4 B • o •

/ u(k+l) ]

D Lu(k+p- 1)J

(3)
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where p is an integer depending on the size of the system model (the dimension of A).

choice of p will be shown later• Let yp(k), Op, up(k), and Tp be defined as

y(k) l
y(k+l) | [ CA r u(k) 1

• =i I _(k+ i) I

ky(k +'p- 1)] [CA'P-1 [u(k +'p- 1)J

q-P t CAB CB D ]LCAi-2B CAi-3B CAP-4B ." O

The

(4)

Equation (3) thus becomes

yp(k)= op_(_) + _-p.p(k) (5)

The matrix Op of dimension pm x n is commonly called the observability matrix. The matrix

Tp of dimension pm x pr is a generalized Toeplitz matrix• Note that Tp is unique even though
matrices A, B, C, and D are not unique because the system Markov parameters D and CAkB

are unique• The use of equation (3) to develop a system model is presented in section 3.2.

3.2. State-Space Model Realization

The goat of state-space system identification is to determine the unknown matrices A, B, C,

and D which are embedded in matrices Op and Tp. One approach starts with computing Op

and Tp from known input and output data. With Op computed, the output matrix C is the first
m rows of Op. Define Op(m + 1 : pro, :) as the matrix consisting of the last (p- 1)m rows (from

(m + 1)th row to the (pm)th row) and all columns of (.Pp. Similarly, define Op(l: (p- 1)m, :) as

the matrix formed with the first (p - 1)m rows and all columns of (.gp as follows:

Op(rn + 1 : prn, :) =

CA
CA 2
CA 3

CAp-1

Op(l: (p- 1)m,:) =

C

CA
CA 2

CA?-2
! (6)

Form the following equality:

Op(m + 1 : pro, :) =

CA
CA 2

CA 3

CAp-1

C

CA
_ CA 2

CAp-2

A= Op(l: (p- 1)m, :)A (7)

The colon in place of a subscript denotes the entire corresponding row or column. The state

matrix can then be computed by

A = O;(1 :(p--1)m, :)Op(rn + 1 " prn,:) (8)
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where t means the pseudoinverse. The integer p should be chosen so that the matrix Op(rn + 1 :
pro, :) of dimension (p - 1)m x n has rank larger than or equal to n as follows:

n

(p-1)m>_n _ p_>--+l (9)
m

where n is the order of the system.

Similarly, the first m rows and the first r columns of the matrix Tp (eqs. (4)) constitute the

direct-transmission matrix D. Define 7(m+ 1 : (p- 1)m, 1" r) as the matrix formed by deleting

the first rn rows of the first r columns of ff-p as follows:

7-(m+ l : (p-1)rn, l :r)=

CB

CAB

CAp-2 B

C

CA

CAp-2

B = Op(1 .(p- 1)m, :)B (10)

Equation (10) produces

B = O*v(1: (p- 1)m,:)=r(m+ 1" (p- 1)m,1- (11)

To determine Op and Tp, first expand the vector equation (eq. (5)) to a matrix equation as
follows:

Yp(k): opx(k) +  ?up(k) (12)

where

X(k)=[x(k) x(k+l).., x(k+N-1)]

Yp(k) = [yp(k) yp(k + 1) ..- yp(k +N- 1)]

y(k) y(k+l) ..- y(k+N-1)

y(k +. 1) y(k.+ 2) -..... y(k +. N)

ly(k+p-1) y(k+p).., y(k+p-I-U-2) (13)

Up(k) = [up(k) Up(k + 1) ... up(k + N- 1)]

u(k) u(k+l) --. u(k+N-1)

u(k.+l) u(k.+2) ...... u(k+. N)

Lu(k+'p-1) u(k+p).., u(k+p+N-2)

The integer N must be sufficiently large so that the rank of Yp(k) and Up(k) is at least equal

to the rank of Op. Equation (12) is the key equation used to solve for Op and q-p and includes
the input- and output-data information up to the data point k + p + N - 2. Because the data

matrices Yp(k) and Up(k) are the only information given, it is necessary to focus on these two

matrices to extract information necessary to determine the system matrices A, B, C, and D.

. _)



The following quantities are defined as:

= lrp(k)Xr(k)

(14)

where N = £ - p, with £•being the data length and p the data shift. The quantities T_yy, _7_uu ,

and 7_xx are symmetric matrices. The square matrices Ttyy (rap × rap), Ttuu (rp x rp), and
_zz (n x n) are the autocorrelations of the output data y with time shifts, the input data u

with time shifts, and the state vector x, respectively. The rectangular matrices TCyu (rap × rp),
TCyz (rap x n), and TCzu (n x rp) represent the cross correlations of the output data y and the

input data u, the output data y and the state vector x, and the state vector x and input data

u, respectively. When the integer N is sufficiently large, the quantities defined in equations (14)
approximate expected values in the statistical sense if the input and output data are stationary

processes satisfying the ergodic property.

When considering equations (14), postmultiplying equation (12) by U;(k) and then dividing
the result by N will yield

nyu = OpTtzu + 7pnuu (15)

which, if T_ 1 exists, yields

7p = (ny, - Opn_u)n_ (16)

The matrix inverse 7_ 1 exists only when integers p and N are chosen so that 7_uu at least has

rank rp. Similarly, postmultiplying equation (12) by YF(k) yields

(17)

and postmultiplying equation (12) by XT(k) gives

= + T (18)

Substituting equation (16) for Tp into equations (17) and (18), and then substituting the

resulting equation for Tiyx into equation (17) will produce

-i T : (9 T OpT6xuT6_iT6Tuoy"_YY -- _f_YU"f_uu "J_yu p'_xx Op -- (19)

Now define

and

-1 r (20)_f_hh : TCyy - "]_yu']_uu Tiy u

-i (21)f_xx : 7_zz - TCx.TC,, TCz,



Equation (19) becomes

- T (22)7"¢hh = OpT_xxOp

i"

Equation (22) is the key equation for determining system matrices A and C. The quantity

T_hh is determined from the output-autocorrelation matrix T_yy minus the product of the cross-

correlation matrix T_y_ and its transpose weighted by the inverse of the input-autocorrelation
matrix 7_. The quantity T_hh exists only if the input-autocorrelation matrix 7_uu is invertible.

The symmetric matrix 7_u_ is invertible if the input signal u(k) for k = 1, 2,... ,2 is rich and

persistent, which results in a matrix Up(k) of full rank, that is, rp. Assume that the input

signal u(i) for i _> k is uncorrelated with the state vector x(k) at time step k. Stated differently,
the current and future input data are uncorrelated with the current state. In this case, the

cross-correlation matrix nzu becomes an n × rp zero matrix and the matrix _zz (eq. (21))
reduces to 7_xz. For example, if the input u is a zero-mean, white, random Gaussian signal,

then _xz = T_zx when the data length is sufficiently long (N --_ co in theory).

Define T_ as

--L@(k)

The matrix 7_ is defined here as the information matrix and is formed by the correlation matrices

_'_yy, _yu, and T_uu of shifted input and output data. The information matrix contains all
information necessary to compute the system matrices A, B, C, and D. Factoring T_ yields

n = nT = LO xp 4, LOp,xp-,. ±p,L yu "_u -1

where Ipm (or /pr) is an identity matrix of order prn (or pr), and Opmxpr (or Oprxpm) is a
prn x pr (or pr x pro) zero matrix. The product of a matrix and its transpose is either a positive-

semidefinite or a positive, definite matrix, depending on the rank of the matrix itself. Therefore,

the matrix product on the left side of equation (24) is a positive-semidefinite or a positive-

definite matrix. In the matrix triple product on the right side of equation (24), the left matrix

and its transpose (i.e., the right matrix) are both of full rank. This means that TChh must be a
positive-semidefinite or a positive-definite matrix as follows:

nhh (25)

for the case when 7_uu > 0 (positive definite), which is required for the existence of T_ 1.

The left side of equation (22) (the symmetric matrix T_hh ) is known from input and output

data and the right side is formed from the product of the rectangular matrix Op of dimension

mp x n, which is the symmetric matrix Tgzz of dimension n x n and the transpose of Op. It

is clear that the matrix Tghh must be factored into three matrices to solve for the observability

matrix Op, and this approach is taken in section 3.2.1.

3.2.1. Computation of A and C

Section 3.2.1 shows two methods for computing A and C. One method decomposes the

full matrix T_hh and is called the full decomposition method. The other method decomposes a

portion of Tghh and is called the partial decomposition method.

3.2.1.1. Full decomposition method. Given matrix T_hh computed from the input and output
data, the matrix decomposition method starts with factoring TChh into the product of three

matrices. Singular-value decomposition is the obvious choice to perform the matrix factorization.

.,



Taking the singular-value decomposition of the symmetric matrix TChh yields

TGhh = U_2U T -- [Lln
uo]L0.o×. 0.o ] Luo ] (26)

The integer no =pm - n is the number of dependent columns in TChh , Onxno is an n x no zero

matrix, and Ono is a square-zero matrix of order no. The prn x n matrix Un corresponds to the

n nonzero singular values in the diagonal matrix En, and the pm x no matrix 12o is associated

with the no zero singular values. Combining equations (22) and (26) produces

O ~ T 2 TT_-hh = p"f_zxOp = Un_nUn (27)

The last equality produces one solution each for Op and _zz as follows:

Op = u. (28)

and

_ = E_ (29)

Equation (28) implies that the pm x n matrix b/n computed from the correlation matrix TLhh is a

representation of the observability matrix Op and can be used to solve for the output matrix C

and the state matrix A with equation (8). The first m rows of b/n constitute the output matrix
C.

Equation (29) gives the correlation _zz (eq. (21)) as the singular-value matrix E 2 of the

correlation matrix 7"¢hh. For the case where the input u is a zero-mean white-noise sequence,

the correlation "['¢zz reduces to _zz (eqs. (14)), which is the correlation of the state vector
x. The diagonal nature of E 2 implies that all individual elements of the state vector x are

linearly independent and orthogonal (uncoupled). Each individual element of the state vector

x(k) represents one coordinate• The importance of each coordinate can then be measured by
the magnitude of the corresponding singular value.

Let the diagonal matrix En be denoted by

En = diagonal[a1, a2, .'-, an] = .2 "'"

o o °

(30)

with monotonically nonincreasing a i (i = 1, 2, ..., n), al > o'2 > • • • > an > 0. Accordingly,

the strength of the elements (coordinates) in the state vector x(k) can be quantified by the

singular values• Assume that the singular values ai+l, • .., an are relatively small and negligible
in the sense that they contain more noise information than system information. As a result, the

coordinates corresponding to the singular values ai+l,... , a n are negligible compared with the
other coordinates. The order of the system may then be reduced from n to i by deleting singular

values ai+l, • •., an.

In practice, none of the singular values will be identically zero because of system uncertainties

and measurement noise, implying that no = O, n = pro, and/20 = [] (empty) without singular-

values truncation. The observability matrix Op (eq. (28)) becomes a square matrix because/-/n
obtained from equation (27) is a pm x pm matrix. The equality (eq. (9)) is violated, indicating

that equation (8) cannot be used to solve for the state matrix A. If none of the singular

10 -'



values are zero, at least m smallest singular values must be considered as zero before using the
full decomposition method. In other words, the last m columns of/dn must be truncated and

treated as/fro. To overcome this problem, a different method is presented in section 3.2.1.2.

3.2.1.2. Partial decomposition method. Regardless of which integer p is chosen, the minimum

value of no must be m (the number of outputs) to make n < pro, which will then satisfy the

equality constraint in equation (27). There is one way of avoiding any singular-values truncation.

Instead of taking the singular-value decomposition of the pm x pm square matrix T4hh , factor
only part of the matrix as follows:

nhh(:, 1: (p-- 1)m) =u 2v T = [u" O,,xoolrv ] (31)

The dimension of TChh(: , 1 : (p - 1)m) is pm x (p -- 1)rn, meaning there are more rows than
columns. The integer no indicates the number of zero singular values and also the number of

' is the number of columns of/gol that are orthogonal to the columnscolumns of 12o. The integer n o

of Urn. For noisy data, there are no zero singular values, that is, no = 0. If no singular values
i ' becomes theare truncated, n o = m is obtained. If some small singular values are truncated, n o

sum of m and the number of truncated singular values. Stated differently, there are at least m

columns of/doI that are orthogonal to the columns of/'gn in equation (31). From equation (27),
it is easy to show that

_hh(:, 1" (p-- 1)m) = O - TpT4zxOp (:, 1: (p - 1)m) = v. n11'-n_2vT"n (32)

which yields the following equations:

Op =/./_ (33a)

and

- 0 T . _ : EnV _ (33b)

Equation (33b) does not imply that _zz = E 2 or opT(:, 1: (p -- 1)m) = vT if equation (33a) is

satisfied. One important feature of this approach is that there are always enough columns of/,/oI

available for computing B and D with or without singular-values truncation. The disadvantage
is that the singular values no longer represent the correlation of the state vector.

3.2.2. Computation of B and D

Similar to computing A and C, three methods are available for computing B and D. The first

method, called the indirect method, uses the column vectors that are orthogonal to the column
vectors of the observability matrix. The second method makes direct use of the observability

matrix and is referred to as the direct method. The third method minimizes output error between

the measured output and the reconstructed output. The reconstructed output is the output time

history obtained by using the input time history to drive the identified system model represented
by the computed matrices A, B, C, and D.

3.2.2.1. Indirect method. With matrices A and C known, the input matrix B and the direct

transmission matrix D can be computed from the Toeplitz matrix Tp (eqs. (4)). To formulate an

equation to solve for Tp, the term associated with the observability matrix Op (eq. (15)) must
be eliminated.



After consideringequations(26)and(28),premultiplyingequation(15)by//oFandusingthe
orthogonalitypropertyof//n and//o yield

Postmultiplyingthe aboveequationby 7_-1resultsin

uTq-p T -1= Uo 7_y_T_ (34)

Equation (34) is the fundamental equation used to solve for the input matrix B and the direct

transmission matrix D. Note that equation (34) does not imply that Tp - ny n,,-J becauseUoF
is a rectangular matrix of dimension no × mp with no < rap. The right side of equation (34) is a

known quantity and the left side contains the matrix Tp, which is partially known to include A

and C and partially unknown to include B and D. Therefore, the matrix Tp must be partitioned
into two parts to extract matrices B and D.

Let Tp be partitioned as

Tp= [Tp(:,l : r) Tp(:,r + l : 2r) ... q'p(:,(p-1)r + l : pr)] (35)

From equations (4) (for definitions of Tp and (gp) and equation (28) obtain

I 11
Tp(:, 1: r) = //n(1 : (p- 1)m, :)B

Tp(:,r+l:2r) [ O%xr ]

[Un(l: (p- 2)m, :)BJ

q-p(:,2r+ l:3r) //n(1 :(p-3)m,:)BJ

Tp(:,(p-1)r+l :pr)= [0(P-_ TM]

(36)

with Oixj being a zero matrix of dimension i x j. The product of//ToTp becomes

//TTp(:, 1" r)= uT(:, 1 "m)D

+//oT(:, rn + 1: pm)lgn(l: (p-- 1)m, :)B

//ToZp(:,r+ 1" 2r)=//T(:,m+ 1: 2m)D

+//oT(:, 2m + 1: pm)Un(l: (p-- 2)m, :)B

blTTp(:,2r+ l 3r)=UoT(:,2m+l:3m)D

+UoT(:,3rn+l:pm)//n(l'(p 3)m,:)B

//ToTp(: , (p--1)r + l:pr)=uT(:,(p--1)m+ l:pm)D

(37)
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Equations(37)canbe rewrittenin thefollowingmatrix form:

where

Uo,/-

No n ---

/4T:Tp(:, 1 : r)

/2T:rp(:, r + 1: 2r)

uT:rp(:, 2r + 1" 3r)

UTTp(:, (p - 1)r ÷ l'pr)

I UoT(:, 1: m)

US(:, m + 1 : 2"9

bloT(:,2m? l : 3m)

UoT(:, (p-- lira + 1:pro)

uT(:, rn + 1: pm)Un(l: (p-- 1)m, :) ]

/4oT(:, 2m + 1:pm)Un(1 : (p-- 2)m, :)|

UoT(:, 3m + 1: pm):Un(l: (p-- 3)m, :)/

J
Ono X'/2

(38)

The dimension of Lto7 is pno × pr and the dimension of Uon is pno x (m + n). Let the right side
of equation (34) be denoted by

T -1
UoT_ -- No _TP_yu_uu (39)

where//o7 _ is an no x pr matrix. Equation (38) shows that l_o7 is thus given by

r UoT_(:, 1: r) "1
I 1:2,0 I

Uo = l I
LUo_(:, (p- 1)r + 1: v)J

(4o)

and matrices B and D can be computed by

[BD ] =U?onUo7 (41)

The first m rows of UtonUo7 form the matrix D, and the last n rows produce the matrix B.

Equation (41) has a unique least-squares solution for matrices B and D only if the matrix

Uon has more rows than columns. Since the dimension of Uon is pno × (m ÷ n), the integer
p must be chosen so that pno > (m ÷ n), where no = pm- n, with n being the order of the

system. For example, ifp is chosen to be (p- 1)m _ n, then the minimum requirement for no is

no = m, which indicates that the order of the system must be determined so that pno > (re÷n)

is satisfied, particularly for the case where all singular values beyond crn (eq. (30)), that is,

o'n+l,..•, Own , are small quantities rather than zeros•

For small no, computing matrices B and D from equation (41) is efficient in time. In practice,

the integer no results from truncating small but nonzero singular values. The truncation error
may in turn introduce considerable error in the computed results for B and D. An alternate
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method for computing B and D without the matrix/4o associated with the zero singular values
is presented in section 3.2.2.2.

3.2.2.2. Direct method. Instead of using Uo to derive equation (34), the direct method
depends on the observability matrix Op to formulate an equation to solve for matrices B and D.

The approach used to derive the direct method is similar to the approach used for the indirect
method.

First, use the notation X(k) defined in equations (13) and the state equations (eqs. (1)) to
• form

X(k + l)= [x(k + l) x(k + 2) .-. x(k + N)]

= AX(k)+ BU'N('k ) (42)

where uIN(k) is defined as

@¢(k) = [u(k) u(k+ 1) ...

Substituting equation (42) into equation (12) yields

u(k + N- 1)] (43)

Yp(k + 1) = OpX(k + 1) + q-pUp(k + 1)

= OpAX(k) + OpButN(k) + TpUp(k + 1)

: OpAX(k) + [OpB Tp] r u%(k) ]
[ Up(k + 1)J

= OpAX(k) + [OpB 7-p]Up+l(k + 1)

From equation (12), the least-squares solution for X(k) is

x(k) = o_[yp(k)- _-pup(k)]

With equation (45) for X(k), equation (44) produces

(44)

(45)

Yp(k+ 1)- OpAO;Yp(k): -OpAOtpTpUp(k)+ [OpB Tp]Up+l(k+ 1)

= {[OpB Tp]- [OpAOtpTpOpmxr]}Up+l(k+ 1)
= rup+l(k + 1) (46)

where Opmxr is a pm x r zero matrix and

F : [OpB Tp]- [OpAOtpTp Opm×r] (47)

Note that OpB is a prn x r matrix, whereas OpAOtpX-p is a pm x pr matrix because Tp is a

prn x pr matrix. Since the dimensions of OpB and OpAOtpT-p are different, they may not be
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directly added to become a single matrix. Similarly, 7p and 0pmxr cannot be directly subtracted.

However, either [OpB Tp] or [OpAOtpTp 0pmxr] is a pm x (pr + r) matrix. Postmultiplying

equation (46) by uT+I(k + 1) thus results in

_yu(m÷ l:(p+ 1)m,:)-OpAOtp_yu(l : pro,:)= I_uu (48)

where

_uu = 1Up+l(k + 1)uT+I( k + 1) /

f (49)

%. = _Yp+l(k+ 1)uLl(k+ 1)

Now, premultiplying equations (49) by (gtp and postmultiplying by _-1 yields

o_%_(m+ 1. (p+ 1)m,:)_;_- AO_y_(l: pro,:)/¢;_= o_*r (50)

where OtpOp = In has been applied. With input and output data given, and matrices A and

C determined, all quantities on the left side of equation (50) are computable. The unknown

matrices B and D are embedded in the matrix F. Similar to equations (37) for computing the

product of//TTp, compute O_F as follows:

OtpF = [B otpq-p]- [AOtpTp 0pmxr] (51)

Similar to equations (37), with the use of the alternate expression for the pm × pr matrix :Tp
(eqs. (36)), one obtains

Optr(:, 1" r)= -AOtp(:, 1 "m)D

+ B- AOtp(:,m+ 1: pm)Op(l: (p- 1)m, :)B

OtpF(:,r + 1" 2r)= [otp(:, 1: m)- AOtp(:,m+ 1: 2m)]D

+ [Opt(:,m+ l:pm)Op(:,l: (p- 1)m)

- AOtp(:,2m+ 1: pm)Op(l: (p- 2)m, :)]B (52)

otpp(:,2r+l 3r)=[otp(:,m+l:2m)-AOtp(:,2rn+l:3m)]P

+ [Otp(:,2m+ l:pm)Op(:,l: (p- 2)m)

- AOtp(:,3m+ l:pm)Op(l: (p- 3)m,:)]B

otpr(:,pr + l'(p+ 1)r)=Otp(:,(p - 1)m+ l:pm)D

Similar to equation (38), equations (52) can be rewritten in the following matrix form:

Opr = OpA [ D] (53)
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J

where

Opt =

OpA --

o_r(:,l- _)
Olpr(:,r + 1" 2r)

OlpV(:, 2r + 1" 3r)

otpr(:,pr+ 1. (p+ X)r)

-_o_(:,1: ._)

[o_(-,1 m)-
AOtp(m + 1: 2m,:)]

[Otp(:, m + 1: 2m)-

AOtp(2rn + 1" 3m, :)]

otp(:, (p- 1)m % 1:pro)

[/.-

AO;(:,rn+ 1: prn)Op(l : (p- 1)m, :)1

[Opt(:, m + l"pm)Op(:,l: (p- 1)m)-

AO;(:,2m+ l "pm)Op(l : (p- 2)m, :)]

[Opt(:, 2m + 1 "pm)Op(:, 1 "(p - 2)m)-

AOtp(:,3rn+ 1" pm)Op(l : (p- 3)m, :)]

On

Here, In is an identity matrix of order n and On is a zero matrix of order n. The quantity Opt
is a pn x r matrix and OpA is a (p + 1)n x (m + n) matrix. Let the left side of equation (50) be
denoted by

opa : o;%.(m + 1-(;+ 1)m,:)/_;_- AO_iay.(l:;m, :)_ (54)

Equation (50) implies that

OpT¢(:, 1: r) 1

o_(:,_+1:2_) /

OpTC(:,pr +'l : (p+ 1)r)J

(55)

Matrices B and D can then be determined from equation (53) by

The first rn rows of O;AOpr form the matrix D, and the last n rows produce the matrix B.

Equation (56) has a unique least-squares solution for matrices B and D only if the matrix

OpA has more rows than columns• Since the size of OpA is pn x (m + n), the integer p must
be chosen so that pn 2> (m + n), where n is the order of the system. The direct method for
computing B and D is generally more computationally intensive than the indirect method• For

example, when n = 10 and p = 20, the number of rows in OpA becomes (p-t-1)n = 210. However,

it is unnecessary to use all the rows of OpA to solve for B and D. It is sufficient to use the number
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of rows in OpA and Opr so that the rank is larger than m -k-n. It should also be noted that

more rows in OpA and Opt may improve the solution, particularly when considerable system
uncertainties are present.

The indirect and direct methods minimize the equation errors of equations (38) and (53),
respectively. This does not imply that the output error between the real output and the

reconstructed output is minimized. Here, the reconstructed output is the output time history

obtained with the input time history to drive the identified system model represented by the

computed matrices A,B, C, and D. An alternate method that minimizes the output error is
given in section 3.2.2.3.

3.2.2.3. Output-error minimization method. The output-error minimization method starts

with rearranging the output equation (eq. (5)). The rearrangement is performed to formulate a

linear equation that explicitly relates the output vector to the elements of matrices B and D.

The least-squares solution for matrices B and D will then minimize the output error between

the real output and the reconstructed output.

Use equation (5) with p - N and k - 0 to obtain

u v(0) = oNx(0) + Zv ;(0) (57)

The matrices B and D are embedded in the term _VUp(0) on the right side of equation (57).
The method for extracting matrices B and D from equation (57) will now be shown.

Let the column vectors in B and D be expressed as

B=[_bl b2 ... br] ]
(58)fD=[d 1 d2 --- d_r]

Each column vector b i (i = 1, 2,..., r) has n elements, with n being the length of the state

vector, and each column vector di (i = 1, 2,..., r) has m elements, with m being the number of
outputs. Let the vectors _band _dbe defined as

b __.

d__

7"

(59)

The column vector b is the result of stacking together all the column vectors of the input matrix

B and column vector _dincludes all the column vectors of the transmission matrix D. Similarly,

let the input vector u(k) be explicitly written as

ru (k)]

= [ 21k) [ (60)
Lu,.ik)J

where the quantities ui(k) for i = 1, 2,... r are scalar, with r being the number of inputs.



With b and d (eqs. (59)) and TN (eq. (3)), _Vup(0) may now be rewritten as

_v,`_(o)=
[ ,`(o) 1

[ £ D |,`(1)

• .. .,,(2)
CAB

LCA_-2B CAN-3B CAN-4B ..i D ku(N'-l)

0D2Xn[ ll_(o) ] _2 cu__(o)

] Um(1) CAb(O) C//n(1 )

= / ll_(2) _ +
LUr_(N CAN-k-2lln(k)

--i) uk_='O

(61)

where Ornxn is an m x n zero matrix, and

llm(k)=[]m,`l(l¢) Irn,`2(k)... ImUr(k)] I
(62)fU__n(k)-" [In,`l(k ) InU2(lc) ... InUr(k)]

and In and In are identity matrices of order rn and n, respectively. Appendix A presents a

simple method of computing the summation term in equation (61). The matrix size of Urn(k)

is rn x mr and U_(k) is n x nr. The purpose of rewriting the expression for _V,`p(O) is to move

the unknown quantities B and D outside the brackets (eq. (61)).

Substituting equations (62) into equation (57) yields

yN(O) = _@ (63)

where
c ll_(o)

CA llm(1)

CA 2 //_m(2)

CA N-1 lira(N- 1)

Ornxn

cll.(o)
CAll(O) + Clln(1)

N-2
E CAN-k-2lln(k)

k=0

(64)

The vector size @ is (n + mr + nr) x 1 and the matrix size • is mN x (n + mr + nr). The
unknown vector (9 can then be solved by

e=¢*vN(O) (65)

where t denotes the pseudoinverse. The least-squares solution 19 does not actually satisfy

equation (63) when the system has input and output noises. However, (9 minimizes the error

between the actual output vector YN(0) and the computed output vector _N(0) = ¢@. Solving
for the least-squares solution (9 can be very time consuming because the number of rows in

is rn times the integer N (data length). For example, the row number can be as large as 10 000
for a system with m = 5 outputs and N = 2000 data points.

The SRIM algorithm was developed to compute system matrices A, B, C, and D. This section
presented two methods for computing matrices A and C and three methods for calculating

matrices B and D. Computational steps for programming the SRIM algorithm are given in
section 3.3.
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3.3. Computational Steps

To better understand the computational procedure for the SRIM algorithm, the computa-

tional steps are summarized as follows:

n
1. Choose an integer p so that p >___ ÷ 1, where n is the desired order of the system and m is

the number of outputs.

2. Compute correlation matrices TC.yy of dimension pm x pro, fCy u of dimension prn × pr, and

n_ of dimension pr × pr (eqs. (14)) with the matrices Yp(k) of dimension pm x N and Up(k)

of dimension pr × N (eqs. (13)). The integer r is the number of inputs. The index k is the

data point used as the starting point for system identification. The integer N must be chosen

so that £- k -p+ 2 _> N >> min(pm, pr), where £ is the length of the data.

3. Calculate the correlation matrix _hh of dimension prn × pm (eqs. (14)), that is, T_hh --
-1 T

"T_.yy- _yu'_uu _yu"

4. Factor _hh with singular-value decomposition for the full decomposition method (eq. (26))

or a portion of TChh for the partial decomposition method (eq. (31)).

5. Determine the order n of the system by examining the singular values of T_hh , and obtain

//n of dimension prn × n (eq. (26)) and//o of dimension pm x no, where no = pm- n is

the number of truncated small singular values. The integer no must satisfy the condition

pno >_ (m ÷ n) for the full decomposition method. For the partial decomposition method, lin

is replaced by U_n (eq. (31)) and the integer no is the sum of m and the number of truncated

singular values.

6. Let lin = Op or li/n -- Op. Use equation (8) to determine the state matrix A. The output

matrix C is the first m rows of/-/n.

7. Compute UoT_ T -1= ug ny,n,, (eq. (39)) for the indirect method, and construct lion and lio7

(eqs. (38) and (40)). Determine the input matrix B and the direct transmission matrix D

from equation (41) (i.e., the first m rows oflitonlio7 form D and the last n rows produce B).

For the direct method, construct Opt and OpA from equation (53) and solve for matrices B

and D by computing Ot.AOpr . The first m rows of Ot.AOpr form matrix D, and the last n

rows produce matrix B.

For the output-error minimization method, construct YN(0) and _ from equations (64) and

solve for matrices B and D by computing _tyN(0 ). The first n elements of _tylv(0 ) form

the initial state vector x(0), the second mr elements give the r column vectors of D, and the

last nr elements produce the r column vectors of B.

8. Find the eigenvalues and eigenvectors of the realized state matrix and transform the realized

model into modal coordinates to compute system damping and frequencies. This step is

needed only if modal parameters identification is desired.

9. Calculate mode singular values (ref. 1) to quantify and distinguish the system and noise

modes. This step provides a way for model reduction with modal truncation.

The computational steps reduce to the steps for the ERA/DC method (ref. 1) when the output

data are the pulse-response-time history. Assume that a pulse is given to excite the system at

the time step zero. Let k = 1 in step 2. The correlation matrices "P_yu and T_uu become null,
-1 T

and _hh -- TC.yy is obtained. Theoretically, the formulation "]'_hh : _yy -- _yuT"_uuTP_yu should
not be used for computation of TC.hh if 7_uu is not invertible. For special cases such as free decay

and pulse responses, TChh reduces to _yy when the integer k is chosen at the point where the

input signal vanishes.
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w1 w2 w3

;1 ;2 ;3

Figure 1. Mass-spring-dashpot system

The SRIM algorithm with the computational steps incorporated with the recursive formula

(appendix B) is more efficient computationally than subspace model identification (SMI)

techniques (refs;a 6-8). The_ SMI techniques require a QR (refs. 8 and 9) factorization of a

large matrix [U_(k) Y_ (k)] _, followed by a singular-value decomposition and the solution of an

overdetermined set of equations. Furthermore, the proposed method with the concept of data

correlation permits more physical insight than the SMI techniques.

3.4. Examples

To illustrate the SRIM algorithm, a numerical example and an experimental example are

given. The numerical example uses a three-degree-of-freedom mass-spring-dashpot system.

The experimental example uses a truss structure tested at Langley Research Center. Different

methods of computing system matrices are compared and discussed relating to system frequencies

and dampings.

3.,[. 1. Numerical Example

Figure 1 shows the mass-spring-dashpot system where mi, (i, and k i (i = 1, 2, 3) are masses,

damping coefficients, and spring constants, respectively, wi(t ) are absolute displacements for the

respective masses, and u i are input forces. The second-order differential equation for this system
is

where

M .__

Mib + Eiv+ Kw = bu

[o100] 0]rn 2 0 _ = -- (2 q'¢3 --¢3

0 m3 -(,_ ¢3

K [ 1 k20] {wl)--_2 k 2 q- k 3 -k 3 w = w 2
-k3 k2 + k3 w3

The corresponding first-order differential equation is

ic = Acx + Bcu

where

x = iv Ac = _M_IK _M_I.- '

20

{o}b= 0

1



with 0a being a zero matrix of order 3, I3 an identity matrix of order 3, and 03xl a 3 X 1

zero vector. For simplicity, let the mass m 1 = rn2 = m 3 = 1, k I = 1, k2 = 2, k 3 - 3, and
-Z = 0.05V_. The damping matrix E = 0.05x/_ is chosen so that each mode has a proportional

damping of 0.5 percent. With a sampling rate of 1 Hz, the system is excited by a discretized

random force u(k) for k = 1,2,..., 3000 (normally distributed with signal of unit strength). Two

output signals are obtained from the accelerometers located at positions 1 and 2 as follows:

where

0 0 _V2 _ Ca W

Y = 1 0 ib3

000]
The measurement vector y after substitution of/b becomes

y = CaM-l(bu -Eiv - Kw) = Cx + Du

where

c = -CaM < [K

The discrete state-space model is

--.] and D=Cab

x(k + 1)= Ax(k) + Bu(k) + u(k)

y(k) = Cx(k) + Du(k) + ¢(k)

where

A = 10-2 x

B = 10 -2 x

-4.0315

47.981

17.092
-133.02

19.188
54.697

0.72516

9.6335

39.563

3.9627
33.292

62.440

47.981 17.092 59.137 22.195 3.9627

-26.375 71.972 22.195 42.886 33.292

71.972 10.211 3.9627 33.292 62.440

19.188 54.697 -4.8427 47.944 17.343

-70.165 28.782 47.944 -26.773 71.916

28.782 -87.442 17.343 71.916 9.6095

C=10_2[-300 200 0 -1.6119 0.60778 0.18028]200 -500 300 0.60778 -1.9492 0.91167

and k is the time index. The quantities u(k) and ¢(k) are added to the model to represent the
process noise and the measurement noise, respectively. In practice, both noises are generally

assumed random-normally distributed. The process noise is set at approximately 10 percent of

the input force, and the measurement noise is set at about 10 percent of the output force, both
as standard deviation ratios.

The initial values for p are arbitrarily selected as p = 6, 12,25, 50, and 100 to make the

maximum system order prn = 12, 24,100, and 200, which is higher than the anticipated system
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order of n = 6. For illustration, the partial decomposition method is used to compute the state

matrix A and the output matrix C. The indirect method and the output-error minimization

method are used to compute the input matrix B and the direct-transmission matrix D.

In practical applications, the correct system order is unknown and the maximum system

order selected by pm provides an upper bound, allowing the solution approach to proceed. From

these upper bounds, there are two ways to reduce the model to the order of 6. One way is to

truncate the singular values of TChh and retain only the six largest values, resulting in system

matrices A of 6 × 6, B of 6 × 1, C of 2 × 6, and D of 2 × 1. The eigenvalues of system matrix

A lead to the frequencies and dampings, and the matrices C and B can be used to estimate the

mode shapes and modal participation factors (ref. 1).

Table 1 lists the true modal frequencies and damping ratios. Table 2 shows the identified

damping ratios for different values ofp. The identified frequencies are not shown because they are

identical to the true frequencies up to three digits. The last column, "Error max SV," gives the

largest singular value of the error matrix between the real output and the output reconstructed

from the identified system matrices with the same input signal. The error matrix has the size

of rn x £, where m is the number of outputs and Z is the length of the data.

Another way to reduce the model order is to obtain the full-size system matrices first (i.e.,

no singular-values truncation) and then perform the modal truncation. Each identified mode is

weighted by its mode-singular value (ref. 1, pp. 139-143). The three modes with largest mode-

singular values are then chosen to represent the system. Table 3 shows the identified damping

ratios for different values of p. The identified frequencies are identical to the true frequencies up

to three digits. (See table 1.)

Table 1. True Modal Parameters

True damping True
Mode ratio, percent frequency, Hz

t 0.50 0.80
2 .50 .28

3 .50 .44

6

12

25

5O
100

Table 2. Identified Damping Ratio Obtained by Partial Decomposition
Method With Singular Values Truncation

Mode 1

damping,

percent
3.06

1.13

.55

.40

.37

Mode 2

damping,

percent
0.93

.53

.43

.41

.41

Mode 3

damping,

percent
1.01
.50

.45

.43

.37

IDM

error

max SV

180.97
136.60

128.28

129.99

132.00

OEM

error,

max SV

167.5

129.77

126.23

127.04
128.01
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12

25

50

1O0

Table 3. Identified Damping B_tio Obtained by Partial Decomposition
Method With Modal Truncation

Mode 1

damping,

percent
3.80

1.65

.66

.46

.42

Mode 2

damping,
percent

1.34

.72

.50

.47

.65

Mode 3

damping,
percent

1.12

.60

.54

.50

.39

Er roI,

max SV

194.95

152.73

126.79
126.18

167.35

Table 2 shows that all damping ratios are underestimated by singular-values truncation of

T_hh when the integer p is chosen sufficiently large compared with the minimum requirement

of p, which is 3 in this example. An integer p exists that produces a minimal output error.

Increasing the value of p beyond the optimal value does not necessarily reduce the output error.

Both the indirect method and the output-error minimization method show similar trends on the

output error. The output-error minimization method gives better output-error solutions than

the indirect method, but takes three orders of magnitude longer for computation when compared
with the indirect method.

On the other hand, table 3 shows that some damping ratios may still be overestimated by

modal truncation for a large p. Also, there exists an integer p that produces a minimal output

error. Comparing tables 2 and 3 indicates that the modal-truncation method performs somewhat

better at p = 50 than both the output-error minimization method and the indirect method. The

computational time for the modal-truncation method is about the same as the indirect method,

but much less than the output-error minimization method. It should be noted that the output-

error minimization method only minimizes the output error relative to x(0) and matrices B and

D (given matrices A and C), and therefore, does not globally minimize the output error relative

to all matrices A, B, C, D, and x(0).

3.4.2. Experimental Example

The experimental results given in this section illustrate the usefulness of the proposed

techniques when used in practice. Figure 2 shows the L-shaped truss structure used. This

structure consists of nine bays on its vertical section and one bay on its horizontal section which

extend 90 in. and 20 in., respectively. The shorter section is clamped to a steel plate that is

rigidly attached to the wall. The square cross section is 10 in. by 10 in. Two cold air jet

thrusters located at the beam tip serve as actuators for excitation and control. Each thruster

has a maximum thrust of 2.2 lb. Two servoaccelerometers located at a corner of the square

cross section provide the in-plane tip acceleration measurements. In addition, an offset weight

of 30 lb is added to enhance dynamic coupling between the two principal axes and to lower the

structure fundamental frequency. For identification, the truss is excited with random inputs

to both thrusters. The input-output signals are sampled at 250 Hz and recorded for system

identification. A data record of 2000 points is used for identification.
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Thruster

Off-center mass--_.
Accelerometer

Figure 2. Truss structure test configuration.

Table 4 lists the modal frequencies and damping ratios identified with the partial decomposi-

tion method for determining matrices A and C in conjunction with the output-error minimiza-

tion method for computing matrices B and D. The initial index p is arbitrarily set to make

the maximum system order prn = 10, 20, 30, 40, 50,100, and 200. The singular-values truncation

is used to reduce the order of the system model to 6. The output error decreases continuously

as p increases from 5 to 100. The speed of decreasing the output error is slow from p = 50 to

p = 100. The frequencies identified for all different p values are close and the damping ratios

range from 2.5 percent to 0.4 percent for the first mode, from 1.5 percent to 0.4 percent for the

second mode, and from 1.2 percent to 0.07 percent for the third mode.

Results from the indirect and direct methods for computing matrices B and D are not shown

because these methods produce output errors several orders of magnitude higher than the output

errors shown in table 4. Both methods work well for the simulation data, with input and output

noises assumed to be white, random, Gaussian, and zero-mean. Therefore, it is believed that

noise nonlinearities are the major causes of the problem of introducing significant errors in

matrices B and D. This example shows that the indirect and direct methods should not be used

in practice for computing matrices B and D if matrices A and C are obtained by the reduced

model with singular-values truncation.

Table 4. Identified Modal Parameters Obtained by Partial Decomposition Method With
Singular-Values Truncation

P

5

t0

15

2O
25

5O

100

Mode 1 Mode 2 Mode 3

OEM

Frequency, Damping, Frequency, Damping, Frequency, Damping, error,

Hz percent Hz percent Hz percent max SV

5.89

5.88

5.88

5.88

5.87

5.86
5.85

2.48

2.08

1.10

.62

.46

.44

.43

7.29 1.54
7.30 .99

7.30 .51

7.29 .38

7.29 .42

7.29 .41

7.28 .43

48.5
48.2

48.0

47.5

47.4

48.4

48.6

1.19

.71

.99

2.06
2.44

.46

.07

621.77

545.58

365.04

264.57
207.63

174.25

167.64
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p
5

10

15

20

25

50

100

Table 5. Identified Modal Parameters Obtained by Partial Decomposition Method
With Modal Truncation

Mode 1 Mode 2 Mode 3

IDM OEM

Frequency, Damping, Frequency, Damping, Frequency, Damping, error, error,

Hz percent Hz percent Hz percent max SV max SV
5.89

5.87
5.85

5.85

5.85

5.85

5.85

3.50

.65

.40

.37

.38

.38

.40

7.28

7.29

7.28

7.28

7.28

7.28

7.28

2.30

.47

.41

.41

.42

.44

.45

49.0

48.6

48.6

48.7

48.7

48.6

48.5

1.13

.74

.46

.44

.64

.47

.30

817.99

262.81
197.32

216.79

203.56

198.69

194.58

735.99

202.84

171.33

174.46

174.06

175.11

174.02

Table 5 lists the modal frequencies and damping ratios identified with the partial decomposi-

tion method for determining matrices A and C combined with the indirect method for computing

matrices B and D without singular-values truncation. The full-size model is then reduced to

the order of 6 (including only those modes of interest) and used to compute the output error.

The output error decreases quickly when p increases from 5 to 10, and reaches a minimum at

p = 15. The output error increases slightly again and then reduces to another minimum at

p - 100. However, the minimum output-error value of 194.58 at p = 100 improves little from

the minimum output-error value of 197.32 at p -- 15. Similar to the results shown in table 4, the

frequencies identified for all different p values are very close and the damping ratios range from

3.5 percent to 0.4 percent for the first mode, from 2.3 percent to 0.45 percent for the second

mode, and from 1.13 percent to 0.3 percent for the third mode.

The similarity of modal parameters in tables 4 and 5 is not surprising because both tables

share the same observability matrix before singular-values truncation. Table 4 shows the modal

parameters computed after singular-values truncation, i.e., some columns of observability matrix

corresponding to small singular values are truncated. On the other hand, table 5 shows the modal

parameters computed from the full-size observability matrix. The modal parameters shown in

table 5 are chosen to represent the system.

The question may arise whether the output errors in table 5 may be reduced if matrices B

and D are recalculated with the output-error minimization method with the same matrices A

and C. The last column of table 5 provides an answer to this question. Indeed, the output errors

are somewhat improved for all cases. The output-error value of 171.33 for p - 15 in table 5 is

better than the output-error value of 174.25 in table 4 at p = 50. This result indicates that the

combination of singular-values truncation combined with output-error minimization may not

produce the global minimum for any given p value. As a result, modal truncation combined

with the output-error minimization method works well for model reduction.

3.5. Section 3 Summary

A new system realization algorithm is developed with a data correlation matrix to compute an

observability matrix with singular-value decomposition. The data correlation matrix is formed by

the autocorrelation matrix of the shifted output data subtracted from cross correlation between

shifted input and output data weighted by the inverse of the autocorrelation matrix of the shifted

input data. The observability matrix is then used to compute the state matrix A and the output
matrix C.
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Two computational methods are presented, including a full decomposition method and a

partial decomposition method, to determine matrices A and C. The partial decomposition

method seems easier to use than the full decomposition matrix because the partial decomposition

method eliminates the need for singular-values truncation. In practice, there are no zero singular

values regardless of how clean the data sequence is. Determining the number of singular values to

truncate requires engineering judgment or use of special techniques such as sensitivity analysis.

Based on the computed matrices A and C, three methods are described for computing the

input matrix B, the direct transmission matrix D, and the initial state vector x(0). The

indirect method uses the matrix with column vectors orthogonal to the observability matrix in
conjunction with a data-correlation equation to extract matrices B and D. The direct method

uses the observability matrix and the output equation to formulate an equation to solve for
matrices B and D. The output-error minimization method determines matrices B and D and

initial state vector x(0) by minimizing the error between the test output and the computed (i.e.,
reconstructed) output. When the input and output noises are white, Gaussian, and zero-mean,

any combination of the methods mentioned in this summary for computing matrices A, B, C,

D, and initial state vector x(0) performs well. For other noises, any combination works well if no

singular-values truncation is conducted. With singular-values truncation for model reduction,
the combination of the partial decomposition algorithm and output-error minimization works

better than the other methods and is comparable to the modal truncation technique.

4. Unification of SRIM and Other Methods

Many system realization algorithms start with a state-space, discrete-time linear model and

then formulate fundamental equations based on data correlation to compute system matrices.

On the other hand, other algorithms use the finite-difference model and data correlation to solve

for the system matrices. The two approaches appear fundamentally different because they use
different types of models. The different models may yield identification results with noticeable

discrepancy because of the different equation errors that are minimized. As a result, it is very

difficult to interpret identification results and choose the technique best suited for a problem.

The need exists to provide a comprehensive, yet coherent, unification of the different techniques.

Section 4 of this paper establishes the relationship among the SRIM presented in section 3
and other realization methods. The SRIM is derived with the state-space, discrete-time linear

equation to form a special type of data correlation for system realization. Other realization

algorithms, such as the observer/Kalman filter identification (OKID) technique (refs. 11 and 12),

start by computing the coefficient matrices of the finite-difference equation, which also requires

information from input- and output-data correlation. The similarity of using data correlation

leads to establishing the relationship between the SRIM and the OKID method. The approach

presented in this section provides a better way to understand and interpret other techniques,

such as OKID and the subspace identification approach developed by other researchers (refs. 6
and 7).

4.1. Time-Domaln ARX Model

The finite difference model is commonly called the autoregressive exogeneous (ARX) model
by the controls community. The ARX coefficient matrices can be computed from input and

output data by minimizing the output-equation error (ref. 11), that is, the error between the
actual output and the estimated output.

The discrete-time ARX model is typically written as

o_p_ly(k + p- 1) +_v-lY(k + P- 1) +.-.+ s0y(k)

= 13p_lU(k + p- 1)+/3p_lU(k + p- 1)+...+/?OU(k) (66)
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where c_i for i - 1, 2,... ,p - 1 is an m x rn matrix, j3i for i - 1, 2,... ,p- 1 is an m x r matrix,

y(k) is an m × 1 output vector at the time step k, and u(k) is an r x 1 input vector at the time

step k. This equation relates the output sequence y(k) to the input sequence u(k) up to p time
steps.

Equation (66) produces the following matrix equality:

o_Yp(k ) - flUp(k ) (67)

where

a=[_0 _1 "'" %-1]

Z=[/_0 Zl "' &-l]

[ y(k) y(_+l) ... y(k+N-1) ]

"p(k) [ y(k+l), y(k+2), y(k + N). [

Ly(k + p - 1) y(k + p) y(k + p + N - 2)J

[ u(k) u(k + 1) u(k + N- 1) "]

Up(k) [ u(k + l) u(k + 2) u(k + N) [

Lu(k +'p- 1) u(k'+p) u(k+p_t-N-2)]

(68)

Postmultiplying equatio n (67) by uT(k), and noting equations (14) for definitions of "R.yu and
_uu, yield

Here, the existence of n_ -1 is assumed. Similarly, postmultiplying equation (67) by VT(k), and
noting equations (14) for definitions of 7_vy and Tgyu, yield

oi'R.yy =/3TC.yT (70)

Substituting equation (69) for/3 into equation (70) thus gives

or

where

-1 T
_ ["]_.yy-'l_yuT_.uu"f'C.yu] =0

c_nhh = 0 (71)

-1 T
Tghh = "]_yy -- T_yu_uu']'_yu

which is identical to equation (20). Equation (71) implies that the m x prn parameter matrix c_

is in the null column space of the prn x pm matrix T2_hh. In other words, any rn columns of/-/o

from equation (26) or/./o _ from equation (31) may be used to construct the matrix c_ as follows:

c_ = any rn rows of //oT or UoIT (72)
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As a result, the m x pr matrix/? can be solved by

T -1 711T,# ,'#-1 (73)fl = any rn rows of /_o "P_yuT_uu or '_o '_-yu"-uu

In practice, no zero singular value may exist to .form the matrix Uo because of system

uncertainties, including input and output noises. The m columns corresponding to the m smallest

singular values may then be selected to form t/o.

Another way of computing c_ and/? is to combine equations (69) and (70) to yield

--_ = 0mxp(m+r) (74)

or

07_ = Omxp(rn+r)

where Ornxp(rn+r) is an m x p(m 4- r) zero matrix and

(75)

_f_yy _2_yu]O = [--a _?] and T_ = T_T (76)
L yu "f_uu

The size of matrix @ is mxp(m+r) and the size ofn isp(m+r) xp(m+r). Equation (75) implies

that the unknown matrix @ exists in the null column space of the matrix/_. Any m columns

generated from the basis vectors of the null column space of T_ may be considered as the solution

for @T. In theory, the integer p must be chosen large enough so that the p(m + r) x p(m 4- r)

matrix _ is rank deficient. Because the pr x pr input correlation matrix _uu is required to have

the full rank of pr, the rank deficiency of 7_ implies that the rank of TCyy must be less than

pro. Specifically, the rank of TCyy cannot be more than pm- rn to have at least m independent
columns to generate the null column space of 7_ of dimension rn.

4.1.1. Observer/Kalman Filter Identification (OKID) Algorithm

One solution for equation (75) can be derived by premultiplying equation (75) by the m x m

matrix a_-i 1 to obtain

___len = o,.,,xp(,_+,.)

or, from equations (68) and (76)

.... - =0mxp( + )

(77)

Now, take out the m rows of 7_ from (p - 1) * m 4- 1 to pm and move them to the right side of

equation (77) as follows:

[ T_(1: (p- 1)m,:) ] =7_((p-1)m+l'pm,:)Ln(pm+ 1 (p+r)m,:) (78)

where

() = [--o_pllO_O --C_p._11o_1.... o_p-_11o_p_20_p.11/?0 o_p_11/71 ... ap_11/?p_1] (79)
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Note that the dimension of @ is m x ((2- 1)m+pr), which is m columns shorter than e because

of removal of the identity matrix Irn. Equation (78) should have the least-squares solution for
@ as follows:

[ n(l:(p-1)m,:) ]_= T_((p- 1)mq- 1: pro,:) [Tg(pm+ 1: (p-t- r)m, :) (80)

where t means pseudoinverse. To avoid the pseudoinverse, delete rn columns of T_((p- 1)rn+ 1:

[ n(l:(;-1)m,:) ]pro,:) from (p- 1)m+ 1 to pm and corresponding m columns of LT_(pm + 1: (p+ r)m, :), "

The parameter matrix (_ obtained from equation (80) is identical to the parameter matrix

used in the OKID technique (refs. 1 and 7) to identify system matrices A, B, C, D, and an

observer gain G. The correlation matrix T_ is referred to as the information matrix and includes

the correlation information between input and output data.

In theory, all methods which start with the same correlation matrix _ should produce

the same identification results. In practice, the identification results may be somewhat
different because of the presence of system uncertainties. For example, the matrix I_ solved

by equation (80) minimizes the output residual between the measured output and the ARX

computed output (refs. 1 and 7). On the other hand, other methods minimize the error

between the measured output and the output computed from an identified state-space model.
Because different error criteria are used for minimization, identification results are expected to

be somewhat different. Nevertheless, the results should not be significantly different unless the

identified models are considerably reduced by either singular-values truncation and/or modal
truncation.

4.1.2. Experimental Example

The data taken from the truss structure (fig. 2) are used in this section for illustration. The

OKID method is applied to determine the system matrices A, B, C, and D. Two computational

steps are required. The first step is to use equation (80) to compute ARX coefficient matrices to

determine system Markov parameters (pulse response). The second step is to use the eigensystem

realization algorithm (ERA) from the computed pulse response to realize matrices A, B, C, and
D simultaneously. In this example, no singular-values truncation is performed in ERA. The

ERA-identified full-size model is then reduced to the order of 6, including only the modes of

interest. The reduced model is then used to compute the output error.

Table 6 shows the modal frequencies and damping ratios identified with the OKID method.

The output error decreases quickly when p increases from 5 to 10, and reaches a minimum at

p = 15. The output error increases slightly again, and then reduces to another minimum at

p = 50. Tables 5 and 6 have identical modal parameters. The output errors in both tables are

very close except at p = 100, where the output-error value of 882.26 in table 6 is 4.5 times larger

than the output-error value of 194.58 in table 5. Since the modal parameters are identical in

both tables, the error from matrices C, B, and D may be the cause of the discrepancy. Indeed,

when matrices B and D are recomputed by the output-error minimization method, the output
error returns to the same level in both tables.
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Table 6. OKID-Identified Modal Parameters
With Modal Truncation

P
5 5.89

10 5.87

15 5.85

20 5.85

25 5.85

50 5.85

100 5.85

Mode 1 Mode 2 Mode 3

OKID OEM

Frequency, Damping, Frequency, Damping, Frequency, Damping, error, error,

ttz percent Hz percent Hz percent max SV max SV
3.50

.65

.40

.37

.38

.38

.40

7.28
7.29

7.28

7.28

7.28

7.28

7.28

2.30
.47

.41

.41

.42

.44

.45

49.0
48.6

48.6

48.7

48.7

48.6
48.5

1.13

.74

.46

.44

.64

.47

.30

818.05

262.81

197.22

215.97

203.21

196.70

882.26

735.99
202.84

171.33

174.46

174.06

175.10

174.02

4.2. Frequency-Domain ARX Model

The frequency-domain ARX model is produced by taking the z-transform of the time-domain

ARX model. The coefficient matrices of the frequency-domain ARX model can be obtained from

the frequency-response data by minimizing the error between the real transfer function and

the estimated transfer function at frequency points of interest. In theory, the ARX-coefficient

matrices obtained from the frequency-domain approach should be identical to the matrices

obtained from the time-domain approach.

Let G(zk) be the transfer-function matrix of the system described by equations (1). Consider

the left-matrix fraction (ref. 1)

O(zk) = a-l(zk)fl(zk) (81)

where

_(z_) = so + _lZ_:1 +... + _p_lZ_-(p-l) /
(82)!1 ^ -(p-l)

fl(z_) = flo+ 191z[ +... +/Sp_lZ_

are matrix polynomials. Every _i is an m x m real square matrix, and each 19i is an m x r real

rectangular matrix. If G(zk) represents the frequency-response function (FRF) obtained from

experiments, the variable zk = eJ(Zrrk/gAt) (k = 0, 1,...,£- 1) corresponds to the frequency

points at 2rrk/£At, with At being the sampling time interval and £ the length of data. The

factorization in equation (81) is not unique. For convenience and simplicity, the orders of both

polynomials can be chosen as p - 1.

Premultiplying equation (81) by o_(zk) produces

_(zk)a(zk) = 19(zk) (8a)

which can be rearranged into

olOG(Zk) 4- ozlG(zk)zk. 1 4-'" 4- OZp-lG(Zk)Z; (p-l) - 190 4- 191z]71 4-'-" 4- 19p_1Z; (p-l) (84)

Equation (84) is the z-transform of equation (66). With G(zk) and z[ 1 known, equation (84)

is a linear equation. Because G(zk) is known at z k = eJ(2_rk/gAt) (k = 0,..., £- 1), there are £

equations available. Stacking up the £ equations yields

e_ = Or_xe (85)
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where

/

G(zo) G(zl) ... O(z,_l)
G(zo)zol G(zl)zl I ... G(z,_l)z[11

a(zo)zo(,-l a(zl)z  p-1) ...
Ir Ir ... Ir

z11I ... z[)_lz 

zo(/l) h z1(/1) h z-(/llh"'" g-1

(86)

@= [-_o -o_1 .... O_p-1 #o #1 "'" /3p-i]

Note that ¢ is an (m + r)p x (rZ) matrix and @ is an m x (m + r)p matrix. Equation (85) is

a linear algebraic equation, implying that the parameter matrix O is in the null column space

of _. The null column space of ¢ is identical to the null column space of ¢¢*, where • means

complex conjugate and transpose. Postmultiplying equation (85) yields

o_ = O,_xv(,_+,.) (87)

where

(88)

The zero matrix 0mxp(m+r) of dimension m x p(m + r) (eq. (87)) is generally much smaller than

0mxt (eq. (85)). Computing (_* without fully forming the matrix _ is easy because of _(_*

special configuration. Computing @ from equation (87) rather than from equation (85) is also
much easier•

Equation (87) is identical in form to equation (75) except that _ in equation (87) is a complex

matrix and T¢ in equation (75) is a real matrix. Both equations (75) and (87) are derived to

solve for ARX coefficient matrices c_ and/3. Both c_ and/3 are real matrices. Therefore, 7¢ and
should have common properties• Since 7_ is a Hermitian matrix, that is, _ = _*, the real

part of _is a symmetric matrix and the imaginary part of _ is a skew symmetric matrix. It

becomes intuitive to suggest that the real part of f_ be considered as 7_ as follows:

T_ = real part of [7_] = real part of [¢q_*] (89)

Although the matrix 7¢ (eq. (89)) is constructed for computing the ARX coefficient matrices, T¢
may also be used for calculating the state matrix A and the output matrix C. Similar to the

partition shown in equation (76), let 7_ be partitioned into four parts as follows:

_11 _12] (90)n= n=j

where T_ll is a pm x pm square matrix, _12 a pm x pr rectangular matrix, and 7"_22 apr x pr

square matrix. Now consider-the following conceptual equalities:

__11 _ "l_yy "R.12 = 7_y_ T_22 = _} (91)
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The prn x pm matrix TChh defined in equation (20) can be formed as

7_hh = 7_ii- 7Q2T_217_lT2 (92)

The matrix T_hh can be used with either the full decomposition method or partial decomposition

method to determine matrices A and C. On the other hand, the matrix product T_12T_2-21can

be used with either the direct method or indirect .method to determine the input matrix B and
the transmission matrix D.

4.2.1. Transfer-Function Error Minimization Method

The indirect and direct methods for computing matrices B and D do not necessarily minimize
the error between the real transfer function and estimated transfer function when small singular-

values truncation is involved for computing matrices A and C. Similar to the output-error
minimization method in the time domain, the transfer-function error minimization method forms

an equation that explicitly relates the transfer function to matrices B and D with given matrices
A and C.

The m × r transfer function G(zk) (eq. (81)) has another form of expression in terms of system
matrices:

G(zk) = D + C(zkln - A)-IB (93)

for all z k (k : O, 1, ..., £- 1). Equation (93) produces

G(z0)

I)
ii C(zoIn - A)-I

= Im C(zlln A) -1

C(ze_lI . - A)-I

:04)

where Irn and In are identity matrices of orders m and n, respectively. Given matrices A, C,

and G(zk) , matrices B and D can then be determined as follows:

Ira C(zoIn _ A)-I it _ G(zo)
Ira C(zlIn - A)-I /• I (95)

For noisy systems, the solutions for matrices B and D do not satisfy equation (94), but

rather minimize the error in the least-square sense between the left side and the right side

of equation (94). In practice, only the real part of equation (94) is needed to determine matrices
B and D.

4.2.2. Experimental Example

This example uses experimental data taken from a large truss-type structure. Figure 3 shows a

Langley testbed (ref. 13) that is used to study controls-structures interaction problems (ref. 10).

The system has eight pairs of colocated inputs and outputs for control. The inputs are air
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8 proportional and
bi-directional

thrusters

2

1

8 servo (DC)
accelerometers

8 7 6

Figure 3. NASA large space-structure testbed.

thrusters and the outputs are accelerometers. Figure 3 depicts the locations of the input-output

pairs. The structure was excited with random input signals to four thrusters located at positions

1, 2, 6, and 7. The input and output signals were filtered with low-pass digital filters, with the

range set to 78 percent of the Nyquist frequency (12.8 Hz) to concentrate the energy in the

low-frequency range below 10 Hz. A total of 2048 data points at a sampling rate of 25.6 Hz from

each sensor are used for identification. In this example, four FRFs from two input and output

pairs located at positions 1 and 2 are simultaneously used to identify a state-space model of the

system.

The integer p = 50 is sufficient to identify as many as 50 modes (for a system of dimension

100). A state-space model is obtained with the frequency-domain version with the system order

truncated to 80 by singular-values truncation, and then further reduced to 78 by eliminating

an unstable mode. Figure 4 shows the reconstructed frequency-response data (dashed lines)

compared with the experimental data (solid lines).

Figure 4 shows the frequency response of output 1 with respect to input 1, which represents

a strong signal. The reconstructed FRF is obtained with the identified system matrices A, B,

C, and D, where matrices C and D are computed by the indirect method. There are 33 modes

(corresponding to 66 states) with damping less than 1 percent. The largest singular value of the
transfer-function error between the test and reconstructed FRFs is 128.89. Careful examination

of figure 4 reveals that there are noticeable discrepancies near the right end points of both the

magnitude and phase plots. One way to fix the discrepancy is to recompute matrices B and D
with the transfer-function error minimization method.
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Figure 4. Comparison of test and reconstructed input-i/output-1 FRF's. Test data and input-i/output-1 FRF

data reconstructed from the identified system matrices.

Figure 5 shows the frequency response of output 1 with respect to input 1 with the newly
computed matrices B and D. The transfer-function error is reduced from 128.89 to 65.184.

There is clearly a trade-off, as the discrepancy between the test and reconstructed FIeFs (fig. 4)
is moved from about 12 Hz to about 8 Hz (fig. 5).

Similar results not shown in this paper were obtained for other input/output pairs. Note that

the frequency response of output 2 with respect to input 1 represents a weak signal. The signal

is weak because sensor 2 is orthogonal to input 1. The results show that matching is better for
strong signals.
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Figure 5. Comparison of test and reconstructed input-i/output-1 FRF's. Test data and input-i/output-1 Fl_.F data

reconstructed from matrices B and D.

4.3. Section 4 Summary

The idea of data correlation leads to relating the system realization method developed in
this paper to other methods that are based on the discrete-time finite-difference model in the

time domain and the frequency domain• The new state-space approach provides a way to better

understand and interpret these methods through use of the information matrix. Indeed, the
information matrix is the common ground for computing the system matrices• The method

developed in this paper uses the basis vectors of the column space of the information matrix

to compute the system matrices. On the other hand, other existing methods use the basis

vectors of the null column space of the information matrix to compute the system matrices. In

theory, both approaches should produce identical results• However, results may be noticeably

different in practice because of system uncertainties and measurement noises, as evidenced by

the experimental examples given in this paper. The mathematical unification presented in this
paper should help users interpret the identification results obtained from different methods.
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5. Concluding Remarks

This paper contains three main technical contributions. First, a generalized information
matrix is introduced consisting of shifted input- and output-data correlation matrices. Second,

a new system realization algorithm is derived with the information matrix as the basis for

computing system matrices. Third, several system realization algorithms are unified via the

system information matrix. For a pulse or free-decay response, the information matrix reduces to

the shifted output-data correlation matrix. Therefore, the classical system realization algorithms

based on a pulse response may be considered as a special case of the algorithm introduced in this

paper, which implies that system realization algorithm unification includes classical realization
methods.

NASA Langley Research Center

Hampton, VA 23681-0001

December 2, 1996
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Appendix A

Efficient Computation of Output-Error Minimization Method

N-2

Computing _ CAN-k-2lln(k) of dimension m × nr for any integer N may be achieved by
k=0

making an imaginary linear system with zero initial conditions as follows:

xij(N + 1) = Axij(N ) + ciuj(N) xij(O) = 0nxl ]

zij(N )=Cxij(N ) i= l,2,...,n j- l,2,...,r f (A1)

where ei is the ith column of the identity matrix of order n, and uj(k) is the jth element of
the vector u(k) defined in equation (60). At any time step N, equation (96) produces a matrix
(suchas z(g)) of m × _r as

Z(N)=[Zll(N) z21(N)"'" Znl(N)"'" Zlr(N) Z2r(N)"" Znr(N)] (A2)

which gives
N-2

E CAN-k-2_--n(k)= Z(N- 1) N > 1 (A3)
k=0

7 -_



Appendix B

Efficient Computation of Information Matrix

Because of the nature of data shifting used to form Yp(k) and Up(k), an efficient way

of computing correlation matrices T_uu , T_yu, and 7_u_ exists• For simplicity without losing

generality, consider the computation of T_yu. The product of Yp(k)UT(k) can be written as

=

E Y(r)uT(r) _, Y(r)uT(r+l) _, Y(r)u_(r+2) '"
r=k r=k r=k

k+N k+N k+N
E y(r)uT(r_ 1) E y(r)ur(r) E y(r)ur(r + 1) ...

r=k+l r=k+l r=k+l
k+N+l k+N+l k+N+1

E Y(T)uT(T-2) E Y(7")uT(T-l) E Y(r)uT(r) "'"
r=k+2 r=k+2 T=k+2

(B1)

From the pattern appearing in equation (B1), the user should have no difficulty filling out all

elements not shown. For example, all diagonal elements are identical except for their upper and

lower limits, and the same is true for all subdiagonal elements. As a result, the second diagonal

element may be computed from the first diagonal element by

k+N k+N-1

E Y(T)uT(r) + y(k + N)uT(k + N)- y(k)uT(k) (B2)
r=k+l r=k

By induction, the diagonal m x r submatrices can be computed recursively by

k+N+i k+N+i-1

Z =
r=k+i+l _=k+i

y(r)uT(r) + y(k + N + i)uT(k + N + i)- y(k + i)uT(k + i) (B3)

for i = 0, 1,... ,p - 1. This recursive formula indicates that each quantity is computed from its

previou s quantity. Similarly, the first upper off-diagonal submatrix on the second m rows may

be calculated from the first upper off-diagonal submatrix on the first m rows by

k+N k+N- 1

E Y(r)uT(r + 1)= E
r=k+l "r=k

y(v)uT(r + 1) + y(k + N)uT(k + N + 1)- y(k)uT(k + 1) (B4)

Therefore, the first upper off-diagonal m x r submatrices can be computed recursively by

k+N+i

y(r)uT(r + 1):

r=k+i+l

k+N+i-1

E- Y(T)uT(r + 1) + y(k + N + i)uT(k + N + i+ 1)
r=k+i

- y(k + i)uT(k + i + 1) (B5)

8 ,:



for i = O, 1,...,p- 2. Furthermore, the second upper off-diagonal m x r submatrices are

calculated recursively by

k+N+i

Z 2)=
v=k+i+ I

k+N+i-1

y(r)uT(r + 2) + y(k + N + i)ur(k + N + i + 2)

"r=k+i

- y(k + i) T(k + i + 2) (B6)

for i = 0, 1,... ,p - 3. Similarly, the third, the fourth, up to the (p - 1)th upper off-diagonal

quantities can be calculated recursively as soon as their first upper off-diagonal quantities are

known. The first upper off-diagonal quantities are the first m rows of the product Yp(k)UT(k).

Similarly, the lower columns may be computed as soon as the first m columns are calculated.

For example, the first lower off-diagonal m × r submatrices may be computed recursively by

k+N+i

y(7")uT(r - 1)----
r=k+i+l

k+N+_-I

y(r)uT(r - 1)+ y(k-+ N ÷ i)uT(k + N ÷ i-- 1)

v=k+i

- y(k + i)uT(k + i- 1) (B7)

for i = 1,..., p- 1. The second lower off-diagonal m × r submatrices may be calculated recursively
by

k+N+i

7=k+i+l

k+N+i-1

y(r)uT(r - 2)= _ y(r)uT(r- 2)+ y(k + N + i)uT(k + N + i- 2)

"_=k+i

- v(k + ouT(k+ i- 2) (B8)

for i = 2,... ,p - 1. By induction, the third, the fourth, up to the (p - 1)th lower off-diagonal

quantities can be calculated recursively as long as their first lower off-diagonal quantities are

determined. The first lower off-diagonal quantities in equation (B8) are the first m columns of

the product Yp(k)uT(k).

Computing the product Yp(k)uT(k) becomes recursive as soon as the first m rows and the first

m columns are computed. For a long data record, that is, N >> 1, this recursive procedure has

a very efficient computing time. The computations of Yp(k)Yf(k) and Up(k)UT(k ) are similar

to the computation of Yp(k)uT(k). Because both Yp(k)Yf(k) and Up(k)UT(k ) are symmetric,
only the upper half or the lower half must be computed.
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